
ECE 4750 Lab 4: Multicore Processor Report
By Morgan Cupp (mmc274), Maria Martucci (mlm423), and Stefen Pegels (sgp62)

Section 1: Introduction
The purpose of this lab was to design and implement both a single core and a multicore microarchitecture, complete with

processors and their respective instruction and data caches.  These microarchitectures were then used to run two sorting algorithms
that we wrote, one with a single thread to be run on one core, and one multi-threaded version to run on our four cores.  This lab
represents the culmination of our processor and cache designs from previous labs, as we connected how software programs written in
a higher level language, C, can be compiled to assembly that our TinyRV2 pipelined, fully bypassed processor can then run with its
support for all the instructions required.  The introduction of both data and instruction caches increases the microarchitecture’s
performance, as we can take advantage of spatial and temporal locality for repeated instructions or data from loops by storing them in
the cache and limiting walks to the main test memory.  This lab connects to lecture material as it is the realization of the incremental
design process we have emphasized in class throughout the semester.  When learning about new microarchitectures, whether for
processors or memory systems, we were introduced to their design by incrementality building up functionality.  Through the use of the
provided networks and leveraging our cache’s support for banking, we were able to finally connect together the pieces of the processor
and caches that we have been incrementally designing in each of the previous labs.

We successfully completed both the baseline and alternative designs.  The baseline design was largely provided to us, and it
consists of a single core as shown in Figure 1.  The single core module instantiates our fully bypassed processor design, as well as two
of our set-associative caches.  It served as a model for our alternative design, namely providing an example of the connection of the
data cache, instruction memory, and processor’s val and rdy signals.  We also successfully wrote the single core quicksort benchmark
with knowledge from previous programming coursework.  The alternative design is shown in Figure 2.  We followed the provided
diagram by instantiating the MemNet and McoreDataCache (four data cache banks shared between all four cores), and using a for loop
to generate four processors and their four respective instruction caches.  The challenge came in connecting the various msg/val/rdy
bundles represented by each arrow in the diagram.  We also track the stats of each cache and its hits and misses by leveraging the test
(hit/miss) field of the cache response as created in Lab 3.  We wrote the parallel sorting benchmark, spawning each core to initially
quicksort ¼ of the data, and then having one core combine the results.

The alternative design performed better than the baseline design in terms of total program time, as for the 5 program
benchmarks it led to -63.0%, -63.8%, -62.5%, -25.9%, and -47.4% total cycles reductions as compared to the single core.  The
multicore was able to take advantage of parallel computing to finish these programs faster and reduce the number of data cache misses
by taking advantage of spatial locality.  The baseline and alternative designs have the same clock frequency, but the multicore design
leads to a significant ~x4 area increase.  The power consumption would also increase, as the alternative design critical path is longer
with need to interface with the MemNet instead of directly interfacing with the test memory.  The significant performance increase of
60% on benchmarks with parallel instructions warrants the increase in area and power, as modern processors today are often tasked
with running a multitude of programs.  This lab placed a new emphasis on the connection between software and hardware and their
co-design. We see how software designers with knowledge of microarchitecture can purposefully create threads that each do a fraction
of the work required, leveraging the ability of the software to run in parallel on multiple cores and complete faster.

Section 2: Baseline Design
The baseline design was provided to us in this lab and implements the block diagram shown in Figure 1. The design is

composed into our processor and cache modules with well-defined interfaces, and this is an example of modularity. Each module also
contains separate control and datapath modules and even more within for the smallest components. This recursive modularity is an
example of hierarchy. The processor-cache interface hides each module’s implementation details; only the request and response values
matter. This is an example of encapsulation. These modules also make use of the val/ready interface design pattern to aid in
encapsulation by making a latency-insensitive interface, further reducing the need for implementation-specific details. Lastly, the
baseline takes advantage of regularity since it instantiates the same cache module twice to create one instruction cache and one data
cache. This common cache structure made it simple to produce two caches with different purposes, but the same internal functionality.

The baseline design works by simply connecting modules we made in previous labs. Our fully-bypassed, single-core
processor is connected to two of our set-associative caches: one for instructions, and one for data. As the processor executes
instructions, it sends its memory requests to the appropriate caches. The caches bring requested cache lines in from memory to exploit
temporal and spatial locality and send responses to the processor. The caches are in turn connected to the test memory which acts as a
main memory. Like before, the processor is also connected to the test source and sink. The source initializes values in registers, and
the sink verifies that specific registers contain their expected values. These modules work together to create a single-core system.

The baseline was provided to us and we did not change it. It is good for comparison due to its simplicity and reliable
functionality. It is single-core which significantly reduces the hardware complexity compared to multicore, yet it has the hardware
necessary to execute most programs. Thus, it sets a standard for accuracy and critical path length that subsequent improvements



should try to preserve. However, the baseline design leaves room for improvement and provides a foundation that can be built upon.
This lab also contains an important software component. For the baseline design, we implement a scalar quicksort algorithm

in C. The goal of quicksort is to sort an array of numbers from lowest to highest. Quicksort has two steps. First, as shown in Figure 7,
a pivot value is selected from the input array, and the values in the array are rearranged such that values less than the pivot are at lower
indices, and greater values are at higher indices. These lesser and greater values are not sorted. Next, quicksort is called recursively on
the lesser and greater values. These subarrays will then be partitioned, and the pattern continues. The resulting algorithm is shown in
Figure 8. The recursion continues until there are no subarrays remaining that are large enough to be partitioned.

The baseline quicksort implementation was fairly straightforward and did not require much creativity since it is a
fundamental, common algorithm. This is especially true since the baseline design runs quicksort on a single core. This means the core
has to do the entirety of the sorting and there is no notion of parallelizing any work. This was not the case for the alternative design.

Section 3: Alternative Design
The alternative design is a multicore system consisting of four processors, four private instruction caches, four shared data

cache banks, and four-port networks that connect the caches to a dual-port test memory. Each processor is also integrated with its own
test source and sink for verification purposes. The multicore system’s high-level block diagram is shown in Figure 9. The multicore
system exhibits the same four design principles as the baseline for the same reasons and more. First, the multicore system has more
modularity due to more processor and cache instantiations. The MemNet and McoreDataCache are also both their own modules, and
the McoreDataCache consists of four caches in a four-bank organization. This recursive modularity in McoreDataCache demonstrates
the hierarchy principle. We were able to integrate the provided MemNet and McoreDataCache by just knowing the interface and not
the implementation; this is a clear instance of encapsulation. Lastly, the multicore system consists of four cores configured in a very
similar way to our single-core system. This repetition of a common structure is an example of regularity.

Figure 2 provides a more detailed block diagram of the multicore system. Our lab 2 processor and lab 3 cache were each
instantiated four times and connected in a manner similar to the baseline design. The instruction caches for each processor are private,
because we did not want one core to have access to another core’s instructions. Figure 2 shows that the instruction caches achieve
privacy by not being banked and connecting to exactly one core. Each core is assigned a unique core ID that provides software with a
way to divide work across the cores. Each cache and core functions the same way, so we could easily distribute work across cores,
since they all have equal capabilities. We used the fully-bypassed processors since bypassing drastically reduces stalling and improves
performance. We chose to use the set-associative caches to reduce conflict misses. We thought reducing conflict misses was more
important than the speedup of a direct-mapped cache, because our programs have temporal locality and cache misses are very costly.
With associativity, it is more likely that previously accessed values will not get overwritten before their next access, causing a hit.

The McoreDataCache and MemNet were provided to us, and each one was instantiated once. The McoreDataCache, as seen
in Figure 10, consists of a CacheNet, a four-banked cache organization, and a MemNet. The CacheNet is a network for handling
requests and responses between the four processors and four data cache banks. The MemNet is a network for handling requests and
responses between the four data cache banks and single test memory port. It is key that the MemNet correctly handles the four
different memory request/response pairs from different caches while allowing them to occur one at a time due to the single test
memory port. Lastly, we instantiated four of our set-associative caches, this time in a banked cache organization. We used a banked
cache organization so that multiple cache requests may occur at once, improving performance by reducing stalling. Since the
processors must be able to access all of the data when doing parallel computation, they do not use private data caches.
McoreDataCache again uses the set-associative cache to increase performance by reducing conflict misses. A separate MemNet was
instantiated to connect the instruction caches to the test memory, and its functionality is essentially the same as the McoreDataCache.

The software portion of this section required implementing a parallel sorting program. Each core has its unique core ID, and
the program knows there are four cores. We implemented the hybrid mergesort/quicksort algorithm suggested in the lab handout.
Figure 11 shows this algorithm. First, the unsorted input array is divided into four blocks. Each block is assigned to one core. Each
core uses the quicksort algorithm from the baseline design to sort its section. There are then four sorted sections, and core 0 merges
them into one sorted array. This is done by calling a merge function three times that can merge two sorted arrays into a single sorted
array (see Figure 11). The merge is done using the merge algorithm of mergesort. It copies one sorted array into a temporary array,
and then copies its values back into the original input array from smallest to largest while also considering the second sorted array.

This algorithm allows the input data to easily be divided evenly, meaning each core does a similar amount of work. This
minimizes time that any one core waits for others to finish, and maximizes parallel computation time. The overhead of dividing the
data is also very small, since all we have to do is calculate the indices within which each core will do a quicksort. One drawback is
that core 0 does all of the merging at the end. This could hinder performance for very large input arrays. A future improvement would
thus be to find a way to parallelize the merging as well. Additionally, cores one through three do nothing while core zero sets up the
parallel computation. Perhaps during these cycles the cores could be made to do something productive, such as pre-fetching input data
values from memory. Nevertheless, the relative simplicity of this first implementation gives a reliable foundation for future changes.



Section 4: Testing Strategy
Our testing strategy leveraged the thorough testing of our subsystems and focused instead on testing the combination of all

our incremental designs together.  Black box testing was performed in the testing of the processor and caches in previous labs by
running a multitude of instructions with different data values, and we performed random testing to remove our bias from the operands
selected.  The provided test cases for the single and multicore system exhibited white box testing, where representative instructions
were chosen to verify the connection of the modules.  We wrote two sorting benchmarks which tested the compilation of real high
level software programs down to TinyRV2 instruction tests for our single and multi-core systems.  We tested the benchmarks
themselves through directed testing of different data sets aimed at exposing corner cases of the algorithms.  A quantitative summary of
our test results can be found in Figure 3.

We have been incrementally testing parts of our final design throughout the labs this semester.  In each of the previous labs,
we first wrote test cases on the Functional Level Model to verify their expected behavior.  The iterative multiplier was tested with
directed black box testing and random operands to verify normal and corner case functionality such as multiplication by zero.  We
performed white box testing by masking off bits to zero, to expose the performance improvement of the alternative design in skipping
cycles.  The Lab 2 processor received test data through the source and updated register values to then be verified by the sink.  Each
TinyRV2 instruction had its own test file containing both directed and random value unit tests. We also tested with random source and
sink delays to verify the processor’s val and rdy interface, used to stall the pipeline when the test memory is not ready to accept the
processor’s request or when the memory takes a variable amount of cycles to return a value.  We also performed basic and mixed
instruction testing with assembly programs, to ensure that a sequence of instructions can properly fill the pipeline.  The instruction and
data caches were tested in Lab 3.  We performed white box testing by writing tests for the write hit/miss and read hit/miss paths to
ensure that all paths of the FSM were functional.  We wrote a design-for-test init instruction that filled the cache with test data so we
could properly test the cache hit path without the need for a functional write miss path, which involves a walk to memory.  We
performed all of our directed tests with different numbers of banks, to ensure correct functionality of the banked cache organization
required in the multicore system.

By our confidence in the above testing strategy for each element that composed our single core design, we were able to
perform tests specifically aimed at the connection of these elements together without worrying about their individual functionality.
The provided single core test chose a representative test from each instruction category (e.g. add for register-register).  The multitude
of directed tests for these instructions, for example with dependencies between the registers, as well as the random value testing and
random source and sink delays, are all organized by the Test/SimHarness.  The harness instantiates the TestMemory models for both
the instruction memory and the data memory, so that the interaction between the processor, instruction, and data caches is simulated
along with source and sink delays from the memory to verify all the val/rdy interfaces seen in Figure 1 as arrows.

The alternative design MultiCore system was similarly tested by the above set of representative instructions to ensure the
proper connections between processors and caches.  The harness takes as input the number of cores, so it correctly connects four
different test sources to each processor and from each processor to its own test sink.  The sw and csr instructions were not tested,
because if each core writes to the same address, then we would not be able to tell which core finished their instruction first and thus
what value is correct to expect.  For csr tests with the four different sources and sinks, the tests had to differentiate between which
core’s source to initialize using the core ID.  Continuing in the incremental testing strategy, the CacheNet, McoreDataCache, and
MemNet also had their own test files.  The CacheNet and McoreDataCache reused the tested cache requests from Lab 3, along with
performing banked and random message testing to try to expose corner cases in the designs.  The MemNet used memory request
messages from the TestMemory tests, as well as random messages to read and write to the main test memory.

We also developed a testing strategy for the single and multithreaded sorting microbenchmarks.  We tried to expose corner
cases in the single thread quick sort algorithm by modifying the test data file to include arrays that were for example already sorted or
had all zeros and a single one at the front, that would require a lot of swaps through the recursive calls to bring it to the front.  We
similarly made new data sets for the parallel sorting benchmark and paid particular attention to the size of the array, verifying that if
the array size was less than the 4 cores that the work was supposed to be split on, the indexing still allowed for proper sorting.

We are confident in the correctness of our single and multicore systems.  We incrementally built compositions in each of the
previous labs, united tested them extensively, and then reused them to build the larger components of the entire system.  This testing
included a multitude of directed tests for each instruction type as well as each memory interaction with the cache such as hit or miss.
The composition of the processors and caches for both the single and the multicore was verified to run the instructions through
directed tests and random value tests, as well as random source and sink delays which highlight the critical interactions between the
msg/val/rdy bundle arrows between the banked data cache, processor, instruction memories, memory network, and test memory.  The
benchmarks for the single and multicore processors all passed, using a mixed set of instructions over thousands of cycles to perform
various programs like vector-vector add and binary search.  These programs required the utmost exactness of each of our subsystems
to achieve the correct final result, solidifying our confidence of correct functionality.



Section 5: Evaluation
In evaluating the performance of our base and alternative designs, total program time, represented by cycles, was the primary

consideration. In Figure 4, the multicore design was shown to be effective at reducing cycles on all benchmarks, with diminishing
returns on benchmarks that involved more operations that utilized shared resources/communication between cores. The multicore
system also took advantage of spatial locality, where present, to reduce data cache misses (Figure 5). The largest improvements came
in the bsearch, cmult, and mfilt benchmarks (-63.0, -63.8, -62.5% total cycles, respectively) due to parallelization of instructions
allowing for speedup with less work for an individual core. CPI decrease was also significant for the multicore system(4.92 vs 1.34 for
bsearch), as the multicore system was able to provide such a drastic reduction in cycles while also handling more instructions (33%
more for bsearch). The percent change in cycles from the base model for the other benchmarks are given in Figure 4.

Conversely, the multicore system resulted in a large increase in instruction cache miss rate, even among benchmarks that had
a significant improvement in data cache miss rate. For bsearch, icache miss rate shot from 0.0063 to 0.0292, a 363% increase (dcache
miss rate decreased from 0.6318 to 0.3369). This icache miss rate increased due to the multicore system beginning execution on four
cores instead of one, meaning initial icache misses. This increase was not significant to total execution time, because of the small
icache miss rate and the very substantial dcache miss improvement, due to spatial locality used by the individual cores. These cache
comparisons can be found in Figure 5. The other drawback to consider for the multicore system was its performance when running
single core applications. In Figure 4, for single core benchmarks run on the multicore system, total cycles increased by an average of
12.8%. This increase is due to the increased hardware present in the multicore system, and the more complicated memory transactions
that are moving between the multi banked data cache systems present in the multicore system compared to the simpler single-core
approach. Also, when the other 3 cores are not in use, they are sent repeated lines of NOPs, which account for the increase in
instructions compared to the single core. The choice to implement the multicore system will then depend on the specific software; if
the code can be parallelized, the multicore benefit is immense, but if not, extra overhead instruction costs will hurt performance. This
again reinforces the lesson that software handling is important in making hardware decision choices; in other words, the way memory
is accessed in the software will dictate whether single core or multicore is more efficient.

An important evaluation of the multicore system is the individual behavior of the constituent cores, and how they contribute
to the overall performance of the system. In Figure 6, a comparison of the full multicore system versus one individual core is
shown(the other 3 cores had similar statistics, and were thus omitted for clear data readability). The icache and dcache miss rates were
nearly identical to that of the overall system, and the core for bsearch ran 730 instructions compared to the overall 2855(25.5% of
total). For the bsearch benchmark, Core 2 had a CPI of 5.25, compared to the 1.34 CPI of the entire system. From this we can evaluate
that Core 2 behaved similarly in its execution to the single core system (4.94 CPI), and the strength of the multicore system comes
from when it can cut the data into quarters and run four single core processors at once. This supports our argument of the strength of
parallelism in computing on large datasets; it allows the hardware to speed up by dividing data and using all its resources.

Compared to the single core, the multicore system adds three more processors, icaches, and dcaches organized in the
McoreDataCache bank system, as well as the MemNet entirely(Figure 1 and Figure 2). This results in a significant increase in the
processor area. The alternative design did not remove components from the base design; so the chip size would only increase. The
manufacturing size of the chip would most likely have to be more than 4x larger, indicating increased cost, but the performance
increase of about 60% for most benchmarks warrants this increase in area.

The energy consumption of a processor is related to the amount of heat generated moving through the circuit in a given clock
cycle, as well as proportional to the clock frequency. Since both the base and alternative designs have the same clock frequency, the
energy difference can be attributed to the change in the critical path of the alternative design, which would produce the same amount
of heat given an equivalent critical path. The alternative design has a longer critical path, so its energy consumption would be greater
than that of the baseline design. In the alternative design, the processors have to interface with the MemNet rather than having the
icache directly connect to test memory, lengthening the critical path. The overall energy consumption can also be attested to the
number of cycles for each implementation, which sways heavily favoring the multicore system, given the parallelism in play. Thus,
single cycle energy is higher in the multicore, but total program energy use is considerably less.

Cycle time can be evaluated by looking at the critical path for both designs(see critical path discussion above). The
associative cache has a longer critical path, and thus a greater cycle time. Thus for instructions interacting with the test memory, the
multicore system will have slightly longer cycles, but not enough to negate the CPI increase.

While exploring parallel computing can affect speed, learning about the organization of software iterations and loop patterns
that highlight specific parallel optimizations showed how software decision-making can impact hardware performance. Implementing
the multicore system from scratch showed us how the modules we have been building come together and interact to create machine
code out of C programs.This provided valuable insight into real life processing units are constructed, and how they take what is on the
screen and decipher it into a series of messages that the computer’s components can interpret.
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Figure 1: Baseline Design, Single Core

Figure 2:  Alternative Design, Multicore
Note: proc2mngr and mngr2proc port names are omitted, and each arrow represents the msg, val, and rdy signal for that connection



Figure 3: Table summarizing testing strategy

Test Script name Number of unit test functions passed

CacheNetRTL_test.py 4

McoreDataCacheRTL_test.py 4

MemNetRTL_test.py 4

MultiCoreRTL_test.py 63

MultiCoreRTL_test.py 68

Successful datasets run on both single-thread quicksort and parallel multithreaded sort

Random value array of size 1
Random value array of size 2
Random value array of size 3
Random value array of size 4

Array of all negative numbers

Array of already sorted numbers

Array of many zeros followed by a single 1

Large array of many random values

Random odd sized array

Random even sized array



Figure 4: Comparison of Cycles, Instructions, and CPI Among Benchmarks, Their Multicore Versions, and Their Single Core
Versions Run on the Multicore System

Bench
mark

Cycles Instrs Total
CPI

Cycles Instrs Total
CPI

Cycle
Change

Cycles Instrs Total
CPI

Cycle
Change

bsearch 10355 2106 4.92 3831 2855 1.34 -63.0% 10883 6188 1.76 +5.1%

cmult 13874 2011 6.90 5302 2702 1.96 -63.8% 16231 8098 2.00 +17.0%

mfilt 26034 5493 4.74 9770 6987 1.40 -62.5% 29675 16621 1.79 +14.0%

qsort 63336 12678 5.00 46963 36250 1.30 -25.9% 71755 39587 1.81 +13.3%

vvadd 4296 811 5.30 2260 1492 1.51 -47.4% 4923 2656 1.85 +14.6%

Key: Single Core, Multi-Core, Single Core Benchmark on Multi Framework

Figure 5: Overall Comparison of ICache and DCache Behavior of Single Core and Multi-Core Benchmarks

Benchmark Icache miss rate Dcache miss rate Icache miss rate Dcache miss rate Icache Change Dcache Change

bsearch 0.0063 0.6318 0.0292 0.3369 +363.49% -46.68%

cmult 0.0033 0.1510 0.0224 0.1515 +578.79% +0.33%

mfilt 0.0039 0.2561 0.0177 0.2319 +353.85% -9.45%

qsort 0.0448 0.0401 0.0182 0.0402 -59.38% +0.25%

vvadd 0.0066 0.2533 0.0334 0.2181 +406.06% -13.90%

Key: Single Core, Multi-Core

Figure 6: Comparison of Multi-Core Individual Core vs Overall

Benchmk Total Core2

Instr CPI Icache
Miss Rate

Dcache
Miss Rate

Instr CPI Icache
Miss Rate

Dcache
Miss Rate

bsearch 2855 1.34 0.0292 0.3369 730 5.25 0.0244 0.4074

cmult 2702 1.96 0.0224 0.1515 695 7.63 0.0150 0.1617

mfilt 6987 1.40 0.0177 0.2319 1809 5.40 0.0155 0.2652

qsort 46963 1.30 0.0182 0.0402 9493 4.95 0.0148 0.0226

vvadd 1492 1.51 0.0334 0.2181 385 5.87 0.0236 0.2471



Figure 7: Partition step of quicksort
Source: CS 2110 lecture slides on sorting

Figure 8: Full quicksort algorithm
Source: https://gaebster.ch/quicksort/

Figure 9: Alternative design block diagram



Figure 10: McoreDataCache block diagram

Figure 11: Hybrid mergesort/quicksort parallel sorting example



Role and Task Table

Morgan Cupp Maria Martucci Stefen Pegels

RTL Design Engineer (architect) RTL Verification Engineer RTL Verification Engineer

Wrote the Baseline and Alternative
Design sections of this lab report.

Established some progress goals for
when we wanted to have different
sections completed.

Studied the alternative design and
gave overarching explanation to
group members.

Helped figure out corner cases to
test parallel sort. Made one corner
case where 1 starts on one end of
the array and must be moved to the
opposite end during sorting.

Suggested key statistics to analyze
in the evaluation section to assess
each design’s performance and
compare them to each other.

Helped coordinate meeting times.

Studied baseline code to make sure
everyone understood it.

Wrote the code for
MultiCoreVRTL.v with some
supervision and debugging help
from Maria and Stefen.

Found a bug where the core_id was
not being assigned correctly and
fixed several port connections.

Discussed how quicksort works and
supervised as it was implemented.

Helped write the parallel sorting
algorithm by making sure our
implementation was following the
provided vvadd example.

Helped debug the parallel sorting
algorithm by placing print
statements throughout the code to
isolate where the error was (turned
out to be the --mcore issue).

Went to office hours with Maria to
figure out the val/rdy issue.

Wrote the Introduction and Testing
Sections of this lab report.

Went to office hours to increase
understanding of the connection of the
MemNet and the test/main memory.  We
were initially very confused why only
the mainmemreq[0] was sent instead of
all 4 positions.

Went to office hours to talk about the
val ready interface not working.
Through running the provided test cases
we saw we were in an infinite loop,
signally that we weren’t advancing
correctly with the val/rdy.  Realized we
had them flipped with respect to
mainmemreq and imemerq.

Implemented the software testing
strategy for the parallel sorting
benchmark.  Utilized a series of print
statements to step through the code, and
see where the references to the source
and destination array were not being
passed corrected.  Also discovered that
some of the array was being overwritten
to zeros through these statements, and
realized we were copying a blank array
over to the destination in some places.

Figured out a bug in the parallel sorting
algorithm - we were stuck for a very
long time because it seemed as if the
threads we spawned were not doing
their ¼ of the work.  Realized that we
were running the wrong command on
the lab handout and didn’t add the
--mcore!

Worked together to write the parallel
sorting benchmark, following the
threading set up of the other multicore
benchmarks like cmult.  Used the same
quicksort as for the single core and then
merged them together through
reviewing CS2110 slides.

Worked together to write the quicksort
algorithm for the single core, using
knowledge from previous CS2110
classwork.

Wrote the Evaluation section of this lab
report.

Contributed to MultiCore datapath
design by creating wires and connecting
submodules to form the multicore
system.

Debugged improper assignments of bit
width on test memory access signals.

Figured out the connections of val/rdy
signals between memnet,
mcoredatacache, and each of the
processors and icaches.

Debugged initial problems finding
correct directories to compile and test
code.

Figured out how to correctly use the
makefile to run each of the simulations
to load onto the multicore system.

Worked to debug issue where initial
multicore design was reaching its
maximum cycle limit and not finishing
execution. Included investigation of
processor states and communication
between cache and processors for refill
requests and cache responses.

Worked to debug multicore quicksort
that seemed to be only affecting one
core instead of all four, including
multiple code refactors to make use of
pointers in different ways.

Added functionality to single core test
cases to enable that they be tested on the
multicore system, to compare drawback
of the extra hardware for the same
operation.

Ran/tested all the benchmarks to obtain
evaluation data and draw performance
conclusions.


